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We examine the connection between Walrasian equilibria of a limit economy 
(with infinitesimal firms) and the noncooperative (Cournot) equilibria of approx- 
imating finite economies (with significant firms). Following earlier work of 
Novshek and Sonnenschein we allow for set-up cost and permit a minimal form of 
mixed strategies. We depart from them by requiring that the aggregate production 
set exhibits some degree (however small) of decreasing returns. Contrasting with 
their results, it is shown that a (regular) Walrasian equilibrium of a limit economy 
can always be approximated by a sequence of noncooperative equilibria for the tail 
of the approximating (finite) economies. Thus, there is a surprising qualitative 
discontinuity when one passes from the Novshek-Sonnenschein case of aggregate 
constant returns to scale of the decreasing returns case of this paper. Journal 01 
Economic Literature Classification Numbers: 021, 022. 

I. INTRODUCTION 

In this paper we present a result that connects the Walrasian equilibria of 
a limit economy, in which firms are infinitesimal relative to demand, with the 
(quantity setting) noncooperative equilibria of approximating finite 
economies, in which firms are significant relative to demand. Such 
connections are explored to help us understand the significance of Walrasian 
equilibrium. The basic reference for this paper is Novshek and Sonnenschein 
[ 111 (see also [ 121). As in their work, we allow for set-up costs and so forth, 
for nonconvex production sets. However, we depart from their analysis by 
assuming that constant returns to scale do not hold in the aggregate, i.e.. the 
employment of a production set is associated with the use of a scarce factor. 
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hospitality. Financial support from NSF Grant SOC78-09934 is also gratefully 
acknowledged. 

153 
0022-053 l/83 $3.00 

Copyright % 1983 by Academic Press. Inc. 
All rights of reproduction in any form reserved. 



154 ANDREU MAS-COLELL 

Still, the number of active firms in a market is determined by the possibility 
of profitable activity. 

Recall that in [ 111, Novshek and Sonnenschein appealed to a minimal 
form of mixed strategies in order to prove the existence of equilibrium in the 
tail of the sequence of approximating economies. In addition, they showed 
that a condition on demand of the downward sloping variety (called DSD) 
was necessary and sufficient for a Walrasian equilibrium of the limit 
economy to be the limits of noncooperative equilibria of the approximating 
economy. The result of this paper estabishes that if (a) (p*,y*) is a 
nondegenerate Walrasian equilibrium of a limit economy r, and (b) 
Walrasian supply is single valued in a neighborhood of p*, so that constant 
returns to scale in the aggregate do not hold, then (c) for every sequence of 
approximating economies, there is a sequence of noncooperative equilibria 
for the approximating economies that converges to (p*,~l*). In order words, 
when returns to scale are not constant in the aggregate, the previous charac- 
terization in terms of the DSD condition fails. In fact, when the aggregate 
supply function is locally single valued, the limits of noncooperative 
equilibria include, in the regular situation, the entire set of Walrasian 
equilibria. This means that there is a surprising qualitative discontinuity in 
the connection between Walrasian equilibrium and noncooperative 
equilibrium (with mixed strategies) when one passes to the case of aggregate 
constant returns to scale. 

Our conclusion from the result of this paper is that, as long as a minimal 
amount of mixed strategies is allowed, a positive solution to the approx- 
imability problem can be obtained under quite general hypotheses, and does 
not depend on the DSD condition, which, in a general-equilibrium context, is 
restrictive. The use of mixed strategies should be assessed in view of the 
following three facts: (i) the approximability problem is an existence 
question, (ii) the production sets of our model are nonconvex, and (iii) at the 
equilibrium. only a (vanishingly) small fraction of the total number of firms 
uses mixed strategies. In the simpler purely convex case, which is also 
formally covered by our result, no mixed strategies need to be considered. 
The convex case has been studied by Roberts [ 141; see also Mas-Cole11 [ 101 
for a state-of-the-art survey. Finally, we should mention that in the 
companion paper Novshek and Sonnenschein I13 ] have succeeded in 
establishing an intimate connection between the DSD condition and the 
positive resolution of the approximability problem in pure strategies. 

This paper investigates conditions under which the set of Walrasian 
equilibria is contained in the set of limits of noncooperative equilibria. We 
do not discuss here the converse problem, i.e., the nature of the limits of 
noncooperative equilibria. This has already been extensively investigated 
(Novshek and Sonnenschein [ 111; see also Gabzewicz and Vial 13 1, Hart 
15, 71, Roberts 1141, Mas-Cole11 [lo]). 
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II. THE MODEL 

1. Commodity Space 

The commodity space is R’. Price vectors are p E R’+ . 

2. Individual Production Sets 

An individual production set Y c R’ is of the form Y = YU (0). where 

(i) There is a compact cube Kc R’ such that Y c K; 

(ii) Y is closed and convex; 

(iii) Yf7 R\ c (0); 

(iv) The correspondence defined on R \ + by 

r,(p) = (y E Y:p . y >p . y’ for all),’ E Y) 

is a locally Lipschitzian function with Lipschitz constant c(p) at p. 
As usual, negative (resp. positive) entries of ~1 denote inputs (resp. 

outputs). See Fig. 1. 

Remarks. (i) Condition (iv) is a way to require, without having to 
assume smoothness, that the efficiency frontier of Y have some curvature. It 
eliminates (at the first-order level) the presence of flat segments. It holds if Y 
is, in the relevant region, strongly convex. See, for example, Vial [ 15 1 for this 
mild strengthening of the concept of strict convexity. 

(ii) Except for closedness and boundedness above, hypotheses (i) and (ii) 
are in the nature of simplifications. 

f 

FIG. 1. Individual production set. 
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3. Space of Production Sets 

Let Y be the space of sets Y c R’ which satisfy hypotheses (i)-(iv) of the 
previous section with respect to a priori fixed K and c(p), p E R’+ + . With 
the topology of the closed convergence (see Hildenbrand 19, pp. 18 1) it 
becomes a compact, metric space. 

4. The Continuum Production Sector 

The set of firm names is the interval I = [O, 1 ] with Lebesgue measure ,I. 
The production sector is described by a (Borelian) function f: [0, 1 ] -+ Y. 
Each b E [0, I] represents a firm with production set f(j?) =f Q3) U (0). 

A production is a (Borelian) function y: I + R’. A production y is feasible 
if y(p) El@?) for a.e. /3 E [0, 11. The aggregate production set Y is Y = (j y: y 
is-a feasible production} which, by Richter’s theorem on the integral of a 
correspondence (see Hildenbrand [9, pp. 621) we know is a closed, convex 
set contained in the convex hull of K and (0). Vectors in Y are called 
feasible aggregate productions. 

The aggregate supply correspondence S: R + + + R’ is defined by 

S(p)= (yEY:p-y>p.y’forally’EY}. 

Remark. Observe that we take the total mass of the production sector to 
be bounded (i.e., n(Z) = 1 < co). Therefore, perfect free entry can be approx- 
imated, but not completely included, by our model. In other words, in our 
model, S(p) can be a large set, but it is always bounded. 

5. The Demand Sector 

The demand sector is specified by a set J c R: and a correspondence 
P: J- R’. The interpretation is that J is the set of aggregate input-output 
vectors for which there is a nonempty set of market clearing prices P(y). 
Thus, P is a general equilibrium version of the notion of indirect demand. 
We assume that P is given to us already normalized, i.e., if p, p’ E P(y), 
then p # ap’ for all a E R. Vectors in J are called attainable aggregate 
productions. 

Suppose we had a consumption sector specified in the usual way by 
preferences, endowments, and shareholdings. Assume for simplicity that 
there is no limited responsibility and that consumers have the same share of 
profits (or losses) in all firms (although this share may vary across 
consumers). Then aggregate excess demand E depends only on prices p and 
aggregate profits 71, i.e., we have a correspondence E(p, rr). Given p and 
aggregate production y, aggregate profits are p . y. We can then view the 
graph of P as the collection of pairs (p, y) that satisfy the equation 
Y E E(P, P . y). 
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FIG. 2. Aggregate demand and supply graphs. 

Remark. It would be natural to impose boundary conditions on P, e.g., 
that prices be uniformly bounded away from zero, but it in view of the 
strong hypothesis on the production sets (in particular, assumption (i)) we 
shall not need to do so. 

6. The Continuum of Firms Economy 

The continuum limit economy is specified by B = (f, P). This is to be 
understood as a normalized presentation. The two components f and P 
should not be thought of as independent. We have taken the production 
sector to have mass 1 and, implicitly, scaled the demand sector relative to it. 
In other words, aggregate quantities are being measured in per firm terms. 

7. The Walrasian Equilibrium of the Continuum Econom-v 

DEFINITION. (p*,y*)E R\+ X J is a Walrasian equilibrium for 8 if 

Y* E w*) and IJ* E pty*>. 

In other words, (p*, y*) is an intersection point of the demand and supply 
schedules. Of course, y* is both feasible and attainable. See Fig. 2. 

8. Regular Walrasian Equilibrium 

Our definition of regular Walrasian equilibrium will consist of two parts. 
First, we will require that, locally, both supply and indirect demand be 
(smooth) functions. Second, the intersection of demand and supply should be 
nondegenerate. 

DEFINITION. The Walrasian equilibrium (p*, y*) of the economy 8 is 
regular if (see Fig. 3): 
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FIG. 3. Regular equilibrium 

(a) There are open (relative to R’) sets A cJ, B c R’ with v* E A, 
p* E B such that 

(i) the graph of P restricted to A X B is the graph of a C’ function 
q:A-B; 

(ii) the supply correspondence S is a C’ function on B; and 

(b) The C’ function q(S(p)) -p, defined on a neighborhood of p*, 
has a full rank derivative at p =p*, i.e., rank (Dq(y*) e DS(p*) -1) = 1. 

Remarks. (i) A selection from P is a function g: P-+ R’ such that 
g(y) E P(y) for all y e J. Condition (i) of part (a) implies that any selection 
g which satisfies g(y*) =p* and is continuous in a neighborhood of y* will 
coincide locally with the function q. 

(ii) The expression q(S(p)) -p gives the difference between the demand 
and supply prices at S(p), or, in other words, the difference between a price 
vector and the demand price vector of the induced supply. We could as well 
have looked at S(q(p)) - y. Note that rank (Dq(y*) . DS(p*) - I) = I if 
and only if rank (DS(p*) . Dq(y*) -I) = 1. 

(iii) We shall not carry out the genericity analysis of our regularity 
definition. Except for the purely convex case, condition (ii) of part (a) 
requires some dispersion of individual production sets or, informally, some 
continuous gradation of efficiency scales. 

Part (b) is equivalent to the regularity condition of Debreu ] 1 ] and 
Dierker [2] (i.e., maximal rank at equilibrium of the derivative of excess 
demand), and is well known to be generic. Condition (i) of part (a) is 
specific to the present theory, and its genericity in an appropriate sense can 
also be established. 
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(iv) The smoothness hypotheses are convenient, but not essential for our 
theory. What is crucial is that P be, locally, a continuous function, that S be 
locally an upper hemicontinuous compact-valued correspondence (which in 
our model is always guaranteed to be), and that (p*,y*) constitute a so- 
called essential intersection of the demand and supply graph. 

9. Finite Economies 

Let I, = {I,..., n). A production sector is defined as in Section 4, except 
that I is replaced by I,, i.e., we have a function f: I, + Y, and production 
y:Z,+R’. Given a production JJ the aggregate production uector is 
1 l/n) cjc,,_y(j). Thus, as indicated before, aggregate quantities are averages 
per firm. The demand sector is as in Section 5. A vector y E R’ is j-feasible if 
y E?(j), and attainable if y E J. A finite economy P is specified by the pair 
cf. P). 

10. Pure Cow-not Equilibrium of a Finite Economy 

DEFINITION. The production y: I,, + R ’ is a Pure Cournot equilibrium 
production for the economy Y = (A P), f: I, + Y, with respect to the 
selection g: J-t R’ from P if, for all j E I,, y(j) maximizes 
g(( l/n)[C,,j_y(h) + y]) . y subject to y being *j-feasible and 
( I/n)[C,+j_y(h) + y] attainable. 

Remarks. (i) The selection g represents the prediction of which 
particular equilibrium price vector will prevail at each y E J. It is a priori 
given. In one form or another, such a prediction device is needed if profits 
have to be evaluated at hypothetical aggregate productions. 

(ii) We refer to Novshek-Sonnenschein [ 1 I]. Hart [ 61, and Mas-Cole11 
[lo] for a discussion of the profit motive in this or similar contexts. 

11. Mixed Cournot Equilibrium 

Suppose a finite economy % = (A P), f: I, -+ Y is given. We will now 
allow the production plans of individual firms j E I, to be random. To 
economize on notation, the symbol y will now stand for a random variable 
with values in R’, and by j-feasible plan we will mean a random variable J 
with values in f(j). A production p will be a collection of independent 
random variables y(j). j E I,. An aggregate production y, also a random 
variable, is attainable if it takes values in J. The expectation operator is 
denoted E. 

DEFINITION. The production y: I, -+ R’ is a Mixed Cournot (or simply, 
Cournot) Equilibrium Production-for the economy 8 = (A P),f: I,, + Y, with 
respect to the selection g: J+ R’ from P, if, for all j E I,, y(j) maximizes 
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Eg(( l/n)[C,,j_y(h) + y]) . y, subject to y being j-feasible and 
( l/n)[&,j_y(h) + y] being attainable. 

Remarks. (i) We are implicitly assuming the risk neutrality of firms. 
This is not crucial. General utility maximization would do. Also, and this 
cannot be made precise at this point, it will be a consequence of our results 
that, in the economies with which we will be concerned, there is very little 
randomness to worry about. 

(ii) The concept of mixed strategies admits of flexible interpretations (see 
Harsanyi [ 81). 

12. Sequences of Finite Economies 

Let gn=(f,,P>, f,:I,-+Y, be a sequence of finite economies, and 
B = (f, P) a continuous economy. Note that the demand sector is the same 
for all economies. Let v, be the counting measure induced byf,, on Y, i.e., 
for each Bore1 U c Y, we put v,(B) = (l/n) #{j:f,(j) E U). Finally, let v be 
the distribution induced by f, i.e., v = k . f -‘. For the concepts of weak 
convergence of measures, support of a measure, and closed convergence of 
sets, see Hildenbrand [9, Part I]. 

We say that Z,, -+ ~3’ if: (i) v, + v in the weak convergence for measures, 
and (ii) supp(v,) + supp(v) in closed convergence. 

Let y be a nonrandom aggregate production, and .rn a sequence of random 
aggregate productions. By y, +y we mean uniform convergence, i.e., given 
E > 0 there is N such that for n > N, ]]v, -J’]] < t with probability 1. 

Remark. The procedure we use to generate a sequence &,, approximating 
a limit K is the simplest consistent with dispersion of production sets at the 
limit and, therefore, with a well-defined limit supply function. This rules out 
replication of firms. If we made explicit the population of consumers 
underlying P, then we could view (SI, as generated from an n-size sampling 
from Y according to the probability v (this would guarantee V, + v and 
supp(v,) + supp(v)) coupled with an n-size replication of the set of 
consumers (which would guarantee the invariance of P across n). 

III. THE RESULT 

THEOREM. Given the continuum economy B = (f. P), let (p*, y*) be a 
Regular Walrasian equilibrium, and g: J+ R’ a selection from P which 
satisfies g( y*) =p*, as is locally continuous at y*. Suppose that K,, + 8. 
Then there is N, and for each n > N a Mixed Cournot equilibrium production 
y,, for 8,, relative to g, such that: 
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(ii) lim, (l/n) #{j: 0 < prob(y,(j) = 0) < 1 } = 0 and _y,U) is 
nondegenerate (i.e., nonconstant) v and only if 0 < prob(_y,(j) = 0) < 1. 
Further, iffJj> is convex, then y(j) is degenerate. 

The firms j with 0 < prob(_y,(j) = 0) < 1 are to be interpreted as the 
marginal firms in the Cournot equilibrium _y,. They necessarily make zero 
profits. 

Remarks. (i) The theorem guarantees that mixed Cournot equilibrium 
exists for the finites economies in the tail of every approximating sequence 
&. H. Dierker and B. Grodal have recently shown by example that existence 
for every term of the sequence is not guaranteed. 

(ii) The conclusion of the theorem is the same as the corresponding 
result of Novshek and Sonnenschein [Ill. The hypotheses are different. We 
do not require the Downward Sloping Demand condition, but impose that 
the aggregate supply function be well defined (at least locally), thus 
eliminating aggregate constant returns (i.e., strict free entry). In the 
companion paper, Novshek and Sonnenschein [ 131 show that the Downward 
Sloping Demand condition is intimately related to the approximability of 
Walras equilibria by nonmixed Cournot equilibria. 

(iii) Although technical, the proof of conclusion (ii) of the theorem is 
routine. The conclusion itself is not surprising. Because the only 
technological nonconvexity involves the entry decision, we conclude that in 
large economies only marginal firms randomize at equilibrium. That the 
fraction of marginal firms tends to zero is the logical consequence of the 
continuous gradation of efficiency scales implicit in the well definiteness of a 
supply function. This is, incidentally, the key contribution of this hypothesis 
to our theorem. 

(iv) Focusing on the basic existence result (conclusion (i)). it will be 
useful to discuss a simple example. Let I= 2. Commodity 1 (resp. 
commodity 2) is an input (resp. output). Indirect demand is given by 
P(y’, y’) = (1, 2~‘). Note that the price of the input is fixed at unity, and 
that the price of the output only depends on the quantity of output. The 
(upward sloping) indirect demand function for positive output is represented 
in Fig. 4. All the firms to be considered have production set P= { (-1, l)} u 

((0,O)). Thus, the only production decision is to produce or not to produce 
one unit at a cost of one. 

In the continuum of firms case, the Walrasian supply correspondence is 
(fixing p’ = 1): S(p*) = (-1, 1) if p2 > 1. S(p’) = {(-a, a): 0 < a < 1) if 
p2 = 1, S(p2) = (0,O) if p* < 1. See Fig. 4. Thus, we have three Walrasian 
equilibria corresponding to (p’, y’) = (0, 0), (p’, y’) = (1, f) and (p’, y*) = 
(2. I). If we now look at a finite economy with n > 1 firms, we see that the 
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FIG. 4. Equilibria with upward sloping demand. 

productions y(j) = (0,O) for all j and y(j) = (-1, 1) for all j are both 
Cournot equfiibria. Thus, the (“stable”) Walrasian equilibria (p’, y’) = (0,O) 
and (p’,y’) = (2, 1) can certainly be approximated by CN equilibria as 
n + co. But what about (p’,y’) = (1, f)? Observe that because the demand 
function is upward sloping, it should be the case that at a Cournot 
equilibrium, if any firm assigns a positive probability to (-1, l), then no firm 
can assign probability 1 to (0,O). Even more, at a CN equilibrium the 
probability assigned to (-1, 1) must be the same for all firms. Call this 
probability 7~. If rc = 0, or X= 1, we get the two nonrandom equilibria we 
already know. Is there an equilibrium with 0 < 7~ < l? The answer is yes, 
and direct computation yields rr = (n - 2)/(2(n - 1)). Of course, as n + co 
this probability approaches f and provides us with the approximating 
sequence for the Walrasian equilibrium (p’, y*) = (1,i). Thus, all the 
Walrasian equilibria can be approximated by Cournot equilibria. 

The example illustrates well why the conclusion fails in the strict free 
entry situation of Novshek and Sonnenschein (which in the continuum limit 
yields an unbounded set for S(1)). In their approach, we always have 
infinitely many potential firms even when the size of an individual firm is 
significant relative to aggregate production. Thus, at equilibrium there is 
always some inactive firm. But in the context of our example, this means that 
every firm is inactive with probability 1, hence (1, :) cannot be approached. 

In the example, conclusion (ii) of the theorem fails. The only way to 
approach (1, 4) is for every firm to use mixed strategies. This failure is a 
consequence of S(p*) not being a function at p2 = 1. For conclusion (i), i.e., 
existence, what is crucial is the compactness of S(l), but for conclusion (ii) 
what counts is that S( 1) be a singieton set. It can be surmised that the 
existence part of the theorem can be extended to include general nonconvex 
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production sets. The hypothesis that should be retained is the uniform boun- 
dedness above of individual production sets. 

(v) Of course, conclusion (i) and the local continuity of g imply that the 
random equilibrium price g(( l/n) xjEln,_yn(j)) also converges uniformly to 
P*. Because y* E S(p*), this should m turn imply by the usual decen- 
tralizing principles that, except (possibly) for a vanishingly small fraction of 
firms and provided n is large enough, every z,,(j) takes value “near” 
c~~~~,(p*). In fact. as the proof of Theorem 1 will make clear, there is 
uniformity, i.e., lim, maxj minyEf ti,,P*j ](_y,(j) --y]] = 0 a.s. 

(vi) In the purely convex cas”e, i.e., 0 Ef,(j) for all n andj, the equilibria 
of the theorem are not mixed. Thus, Theorem 1 includes Roberts’ [ 141 
existence results (see also, Mas-Cole11 ] IO] for a review of the convex case). 

IV. PROOF OF THE THEOREM 

The idea of the proof is to carry out a fixed point argument in a 
neighbourhood of the limit equilibrium. This is done in Section 3. which 
constitutes the heart of the proof. Section 1 contains the required E and 6 
preliminaries, while Section 2 appeals to degree theoretic arguments to 
establish a general fixed point result, which is then applied in Section 3. 
Section 4 proves contusion (ii). 

The proof would be somewhat simpler if we had succeeded at: (i) reducing 
the existence problem to finding a fixed point in a space of dimension r, 
where r is independent of n, and/or (ii) obtaining the approximating 
sequence via an Implicit Function Theorem. We have, however, accom- 
plished neither. 

1. Preliminaries 

Without loss of generality, we can assume that the compact cube K 
contains the origin. Then Y U (0) c K for all YE Y. Let 97 be the space of 
nonempty, closed subsets of K. We endow g with the topology of the closed 
convergence, which makes it compact. Generic elements are denoted Z. By 
convention, i = Z U (0). 

Denote by C’(K) the space of continuously differentiable functions on K 
endowed with the /] (1, norm. Generic elements are q. Without risk of 
confusion, we use the same symbol p for linear functions on R’ and for their 
gradient vectors. Let CL(K) be the compact subset of C’(K) formed by the 
functions which gradients functions admit a Lipschitz constant Q. 

For given a > 0, define the correspondence ul,: @ x C:(K) X [O, 1 ] + K 
by ‘v,(Z, q, p) = {z E Z: v’(z) > I’ for all z’ E Z and some q’ E CL(K) 

with llrl- ~‘111 <<PI. 
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LEMMA 1. Let YE Y, and c be a Lipschitz constant for the function ly 
on a 6 neighborhood of p B 0. Zf a < 1/2c and lip - q II1 < 6, then !Pa(Y, q, 0) 
is a singleton. 

ProoJ Suppose not, i.e., there are y, ,yz E ul,(Y, v, 0), y, # yz. Call 
pI =WylX p2 =@(Y,). Then lIpI -ppzll < a l/y1 -.v211 < 1/2cII~, -Y~II. 
Hence, /] y, -yz]] > c I(p, -p211. However, y, = r,(p,) and y, = lF(pz). Also. 
IIP-VII, <J implies IIP-P,II <a and IIP-PA ~6. So, /IJ~,-Y~~/~ 
c I/p, - pz /] and we have a contradiction. 1 

LEMMA 2. The correspondence !PO, a > 0, is upper hemicontinuous. 

Proof: Let z, E Y,(Z,, q,,p,,), Z,+Z, 7,‘~. p,,+p, and z,+z. For 
each n, pick 11; E CA(K) such that ]] q, - v,!,]] < p, and v;(z,,) > qA(z;) for all 
z; E Z,. Because CA(K) is compact, we can assume that q:, + q’ E CA(K). 
Of course, ]] v’ - q]], <p. Consider now any z’ E Z. Since Z,, + Z, there is 
z: + Z’ such that z; E Z,. So, qA(z,) > qA(z,,) > v;(z;) which. letting II --t co, 
yields q’(z) > I’. Therefore, z E ul,(Z. q, p). i 

Now let $n + P be as in the statement of the theorem. 

LEMMA 3. Let BcR\, be a compact price region where the supply 
correspondence S of the continuum economv is single-uafued. Given F > 0, 
there is N and 6 > 0 such that if n > N and, for all j E I,,, 
dj) E ~,(fAj),p, 4, P E B3 then IIS - l/n Cj~,,,Y(j>ll < F. 

Proof: Let v,, v be the distributions on Y induced by z”, 8. By 
convention v,, = v. The convex hull of a set T c R’ is denoted co T. Observe 
that the values of y1 are always subsets of K. 

For this proof, we shall make extensive use of the theory of the integral of 
a correspondence (see Hildenbrand (9, D. II. p. 53 1). For n E { I...., co }. 
pug and pE [0, I], define S(p, l/n,p)=jco ‘P,(Z,p,p)du,. Note that 
S(p, 0,O) = S(p). Therefore, what we want to establish is the existence of 6 
such that if l/n < 6 and p < 6, then ]] y - S(p, O,O)i] < E for all 
y E S(p, l/n,p) and p E B. Because B is compact, this is implied by the 
following continuity property: if p, -‘p, l/n -+ 0, and p,, --t 0, then 
S( P,,, l/n, P,) + S(p. Q 0). 

By the Skorohod Theorem (Hildenbrand 19, p. SO]), there are measurable 
functions h,, h: [0, 1 ] +Ysuchthatv,=1oh;‘,v=~oh ‘,andh,+ha.e. 
We can change variables and put S(p,, l/n, p,) = _(_ vl,(h ,̂(t),p,, p,) dt. 
S( p, 0,O) = 1 Y,(A(t), p, 0) dt (Hildenbrand [ 9, Theorem 5, p. 67, and 
Theorem 4. p. 641). Therefore, S(p,, l/n. p,) + S( p, 0,O) follows from 
Hildenbrand [9, Theorem 6, p. 681). 1 

Let (p*.y*) be the regular Walrasian equilibrium for P under 
consideration. Let y* E A, p* E B be neighbourhoods of y*, p*, respectively, 
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such that: (i) there is a C* selection g: 2-r R’ from P such that g(y*) =p*, 
and (ii) B is convex, S is C’ on B, S(B) c A, and “g(S(p)) -p = 0, p E B” 
implies p =p* (to guarantee all this, choose an A satisfying (i), and then 
take a very small convex B. The last property follows from the rank 
condition). Now choose c > 1 such that c > c(B) (remember that c(p) is a 
uniform local Lipschitz constant for ly(p), YE Y), and ,D > 0 such that (i) if 
p E B and IIuIj < p, then S(p) + u E A, and (ii) II g(S(p)) -plj > ,U for all 
p E ZB. Let then e <p/2 be such that p E B and IIS - zII < E implies 
I/ g(S(p)) - g(z)11 < 42. Obviously, this E exists by continuity. Finally. let 
N,and 6 > 0 be as in Lemma 3 with respect to this E. We can also assume 
that 11 p’ --p/l < 6 and p E 3 implies c(p’) < c. 

By taking an arbitrary C* extension let us assume that g is defined on the 
whole of R’. Pick a large enough r so that I/ till, /I g(v)ll, IIDg(v)(l, 
ilD’g(v)ll < r for all u E K. For a given n let .I’, ,...,.V,, be an arbitrary 
collection of independent random variables with values in K. For a fixed 
p E B, consider the function h;: K + R defined by 

h;(z) = E 
1 “<,I 

n _ 
i- I 

?i+$z) -Eg p-q) +p) .z]. 

Immediate calculation yields /I p . z - h,“(z)11 < (3/n) r3. /I p - Dh;(z)I/ < 
(3/n) r2 for all z E K and IIDh,“(z) - Dh,“(z’)ll < l/n (r + r*) jlz - z’ j/ for all 
z, z’ f K. Obviously, the same holds for hi ,..., h,“- I. Henceforth, by choosing 
N > N, sufficiently large, we can guarantee that if n > N then 

(i) 2r/n ( p/2. and for all p E 8, j E I,,, and random variables 
-15, ,..., ?‘,; 

(ii) hi E C;,,,,(K); 

(iii) IlhA-pll, < 6. 

This N will turn out to be large enough to yield the conclusion of the 
theorem. At this point, it will be useful to collect in three lemmas some 
consequences of the constructions carried out so far. 

Maintained hypotheses for the lemmas are that n > N and y1 ,...,.1’, are a 
collection of independent random variables taking values in K. For p E B, 
h;,..., h,“: K + R are defined as above. 

LEMMA 4. For any j E I,, and p E 3, the solution to “Maximize hi(z) s.t. 
z Es,(j)” is unique. 

Proof: Lemma 1 and properties (ii), (iii) above. 1 

LEMMA 5. Given p E B, suppose that, for all j E I,, , ii solves “Maximize 
hi(z) s.t. z Efn(j).” Then [[(l/n) xjE,” ii - S(p)/1 < E (which implies 
II g(s(P)) -g((‘ln) C.jsI, 2j)ll < P/2). 
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Proof: This follows from Lemma 3 and property (iii) above. 1 

LEMMA 6. Given p E g, suppose that for all j E I,, every value taken by 
yj solves “Max h;(z) s.t. z Efn(j).” Then, for all j and z E K, 
J=(l/n)~~-,yiandy-(l/n)(y~-z) belong toA a.s. 

Proof By Lemma 5, 1]7- S(p)11 < E < 42 a.s. Hence, PE A a.s. Also, 
1l~-(l/~~)(V,~z)-~s(~)ll < (~ln)ll.Fn-~l/ + IIY-S(p)11 < 2rlnfe < 
p/2 + ,u/2 =+ (Here, property (i) above is being used.) Therefore, again. 
Y-(l/n)(y”-z)EA a.s. 1 

2. A Fixed-point Theorem 

The existence result (part (i)) of Theorem 1 will follow from a general 
fixed-point theorem to be proved in this section by degree theoretic methods. 

Let M c R” be homeomorphic to the (n - 1) sphere. The degree of a 
continuous function h: M-+ R”\{O}, denoted deg h, is defined to be the 
topological degree of the function m + (l/]]h(m)]]) h(m) which, via a 
homeomorphism of M, can be looked at as a function from the n - 1 sphere 
into itself (intuitively, the degree measures how many times the sphere is 
wrapped around itself). See. for example, Guillemin and Pollack [4, Chap. 8 ] 
for the definition of topological degree and its basic properties. A 
fundamental fact is Hopf s Theorem: A continuous function h: M+ R”\(O) 
can be extended to a continuous function on the bounded region limited by M 
without taking the value 0 tf and only if deg h # 0 (see Guillemin and 
Pollack [4, p. 1451). 

Two continuous functions h, h’: M+ R”\(O} are homotopic if there is a 
continuous function H: M x [O, l] -+ R”\{O) such that H(., 0) = h and 
H(., 1) = h’. The degree of a map is invariant under homotopy. Now let 
h, h’: M -+ R”\{ 0) be upper hemicontinuous (u.h.c.), compact, convex-valued 
correspondences. Allowing for H to also be one such, we have a concept of 
h, h’ being homotopic. Define the degree of an u.h.c., compact, convex- 
valued correspondence h to be the degree of any continuous function h’ 
homotopic to h. It is easy to verify that this concept is well defined and 
remains a homotopy invariant. Most important, Hopfs theorem remains 
valid (i.e., same statement with “continuous” replaced by “u.h.c.,” and 
“function” by “convex, compact-valued correspondence”). 

Let M c R” x R” be a nonempty set. A correspondence @: M + R” X R” 
is a product correspondence if for all z E M, Q(z) can be written in the form 
Q(z) = Qn(z) x Q,(z), where Q,(z) E R” and Q,(z) E R”. 

We can now state: 

FIXED-POINT THEOREM. Let A c R”, B c R” be nonempty, full- 
dimensional, compact, convex sets. 
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Let @: A x B + R” x B be an u.h.c., compact. convex-valued product 
correspondence, i.e., @(a, b) = GA(ar b) x Qa(ur b). 

Let h: iiA + R” be a continuous function with deg h # 0 (a stands for 
boundary). Put Min,,,,caa, z 

Suppose that 
when;b,L= & > 0. 

a E 3A and b E QR(a, b), we have 
11 z - a - h(a)11 < E for all z E QA(a, 6). Then @ has a fixed point, i.e., there 
is (a. b) E A x B such that (a, b) E @(a, b). 

Remark. (i) If @ mapped into A X B, then Kakutani’s theorem would 
yield a fixed point with no other hypothesis than convex, compact- 
valuedness, and upper hemicontinuity. But the fact is that it maps into 
R” x B. The extra conditions (i.e., product correspondence, assumption 
involving h), make up for this by providing a sufficiently “good” behavior of 
@ at the boundary 3A x B. 

(ii) The fixed-point theorem is tailor made to our needs. It does not 
pretend to be most general in any sense. In particular, it may be surmised 
that a version treating A and B symmetrically should be available. 

Proof of the Fixed-point Theorem. It proceeds in two steps. 

Step 1. We show that without loss of generality we can assume that 
@,,(a, b) = a + h(u) whenever a E 3A. For any a E R”, let ZZ(a) be the foot 
of a in A, i.e., II(a) is the point z E A which minimizes 11 a - zll. Let 
a = {a E R”: II a - ZZ(u)ll < 1). The set a is compact, convex. We extend @ 
from A X B to a X B as follows: 

$Aa, b) = a + Ila - fl(a)ll (W(a))> 

+ (1 - Ila - fl(aM@,4W(a), b) - Wa)), 
@&, b) = QB(n(a), b). 

This is a genuine extension because a E A implies ZZ(a) = a. Also, for 
a E & we have &,.,(a, b) = a + h(LZ(a)) and, of course, deg(h o ZZ I &) = 
deg(h ( 3A). Therefore, all we need to show is that in the extension no new 
fixed point is added. We proceed by contradiction. Suppose that (a, b) E 
@a, b) for (a, b) E &4 X B. Then b E @8(a, b), i.e., b E @t#Z(a), b). But 
ZZ(a) E 3A which, by the hypothesis of the theorem, implies that if 
z E @,(IZ(a), b), then IIz - ZZ(u) - h(LT(u))ll < E. Also, a E &,4(a, b) which, 
denoting a = 11 a -II(a) yields that for some z E @,4(ZT(a), b) we have 
ah(ZT(a)) + (1 - a)(z - n(a)) = 0. Hence, from h(IT(a)) = ah(ZT(a)) + 
(1 -a>(z-W)> - (1 -a)(-ZI(a)) + (1 -a) h(ZZ(a>), we get llh(IT(u))ll < 
(1 - a) E < F, which is the desired contradiction (remember the definition 
of E). 

Step 2. We assume that QP,(a, b) = a + h(a) when a E 3A. Let Z be the 
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identity map in A x B. Pick bE Int B. Let q: B -+ R” be r](b) = b- b. 
Of course, degvIaB=(-l)“‘#O. Let Y:AxB-+R”xR” be given by 
Y(a. b) = (@,(a, b) - a, b - b). Consider the homotopy tY + 
(1 - t)(@ - Z) E A’. We claim that 0 E A’(a, b) is not possible for (a, 6) E 
a(A x B) and t E (0, 11. We argue by contradiction. Suppose 0 E A’(a, b), 
t > 0, (a, 6) E a(A x B). Then, either 

(i) a E 8A, yielding YY4(a, b) = h(u) and (@,, - Z,,l)(u, b) = h(u). which 
implies A:(a, b) = h(u) # 0, or 

(ii) b E 8B. In this case, t(b- b) + (1 - t)(z - 6) = 0 for some f > 0 
and z E @*(a, b) c B. But this is impossible because both vectors b- b and 
z - b point inwards and 6- b # 0. 

So, for t > 0. deg(A’ / a(A x B)) = deg(A I 1 a(A x B)) = deg( Y 1 a(A x B)). 
Because the A and B coordinates of Y depend only on their own variables, 
the degree of Y) cY(A X B) is straightforwardly computed: 

deg Y j a(A x B) = (deg h 1 JA)(deg qI8B) # 0. 

Therefore, deg A” / F(A X B) # 0 and. by Hopfs theorem, there is (a,, 6,) 
such that 0 E A’(ur, b,). Let (E,6) be a limit point of (a,, 6,) as t + 0. Then, 
by the u.h.c. of A on IO. 11 x A x B we have 0 E A”(& 6). i.e., (@, 6) E 
qa. 6). I 

3. The Fixed-point Map 

Let N be as at the end of Section 1, and n > N. 
We shall define an u.h.c. compact, convex-valued product correspondence 

@: i?x K” x 10, 11” --t R’ x K” x 10, 1 I”, 

such that (i) every fixed point of @ yields an appropriate Cournot 
equilibrium production x,, , and (ii) the conditions of the fixed-point theorem 
of the previous section are met. Since A can be taken arbitrarily small, this 
will end the proof of Theorem 1. 

Denote by (p, 4: cr) E B x K” x [0, 11” the generic entry in the domain of 
@. For (p, JJ, cz) given, let yi, 1 <j < n, be independent random variables 
defined by prob(pj =.vj) = aj, prob(Jj = 0) = 1 - aj. Put v= (l/n) ~,~=, yi. 
With g as in Section 1, let zj be the unique (Lemma 4) solution inf,,(j) to the 
maximization of E[(g(j-(l/n)Jj+(I/n)zj)-Eg(J)+p).zi], and let mj 
be the maximum value. Let then (xi = ( 1) if mj > 0, Ei = [0, 1 ] if mi = 0. and 
tij = {0} if mj < 0. Finally, put 

.j= 1 j-l 

We claim: 
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LEMMA 7. If (p, y, a) is a fixed point of @, then the mixed production z,, 
given by y,(j) = yij is a Cournot equilibrium with respect to any selection 
which coincides with g on A. Also, y has aggregate production-taking values 
in A. 

Proof. This is straightforward. Because yj = zj, every -Vj takes values in 
{zj, 0). Since p = Eg(y), and aj E a,, we conclude that every value taken by 
yi solves the right problem, i.e.. maximizes E[ g((l/n) CitjJi + (l/n) z) . z 1 
on f,(j) =f,(j) U (0). Lemma 5 insures that 7 takes values in A a.s., and 
Lemma 6 that the result does not depend on how the price equilibrium 
selection is made on J\p. 1 

LEMMA 8. With A = B and B = K” x 10, 1 I”, the conditions of thefixed- 
point theorem of Section 2 are satisfied. 

Proof: We need to find a function h: 3s + R’ with the desired properties. 
Let it be h(p) = g(S(p)) -p. Because rank Dh(p*) = I and h(p) = 0, p E B 
implies p = p*, we have deg h # 0. Let p be as in Section 2. Then llzll > p for 
all z E h(aB). 

Let (p,y,a)EBxK”x[O,l]” besuchthatpE3~,yj=zj,anda,jE~i, 
for all j. To verify the conditions of the theorem. it suffices to show 
IlEg -p - h(p)11 < p, i.e., IlEg - g(S(p))ll < p. But this is precisely 
what Lemma 5, and yj = zj, aj E Ej for all j, guarantee. I 

4. Proof of Conclusion (ii) 

Let Fn + F and -11~ be the Cournot productions converging to the 
Walrasian equilibrium (p*, ?I*). Denote by hnj: K + R the profit function of 
firm j E I,, i.e., h,,(z) = E(g((l/n) Ciej_Y,,(i) + (l/n) Z) . ~1, and fl,j the 
maximum value for z Ef,(j). 

The space Y is closed in v. For each Y E Y define IZ( Y) = max p * Y. For 
each m>O let Z=(YEY:OEY}, Z,=(YEY:n(Y)<-l/m}, Z,= 
( Y E Y: Z7( Y) > l/m}. U, = F’\Z U Z,, U-Z,. The three sets Z. Z,, , and Z, 
are closed in V. Henceforth, U, is open. Let Im = @ f [O, 1 I:/@) E U,,), 
I” = (p E [ 0, 11: zz(f(P)) = 0, 0 @f(J)}. Because S(p*) is single-valued, we 
should have A(Ia) = 0. Because I” = 0, I”, we get ,I(Zm) --) 0, or v(U,) + 0. 
Since v, + v weakly, lim, v,(U,) = v(U,) for every m. 

Let E > 0 be arbitrary. Pick m such that v(U,,,) < e/2, and N such that 
whenever n > N: 

(i) v,(U,) - v(U,J < 42, implying v,(U,) < E; 

(ii) for all j E I,, there is a unique maximizer of h,/ on f,(j) 
(Lemma 1); 

(iii) for all j E I,, lIZnj - ZZ(f,(j))l < I/m (Lemma 2). 
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Consider any n > N. By (ii) above, p,(j) is nondegenerate if and only if 
0 < prob(_y,(j) = 0) < 1. We claim also that if f,(j) @ U,,,, then x,(j) is 
degenerate. Indeed, three cases are possible: (a)f,(j) E Z. Thenf,(j) =f,(j). 
and the degeneracy of_l’,(j) follows from (ii) above; (b)f,(j) E Z,. Then by 
(iii) above, 17, < 0. and so x,,(j) = 0 a.s.; (c) f,(j) E Z,. Then by (iii) 
above, Iii > 0. Hence, the value 0 is not taken by z,(j), and degeneracy 
follows from (ii) above. So, we conclude that {j E Z”:?,,(j) is 
nondegenerate} c {j E I,:f,(j) E U,,,}. The latter set has v,, measure less 
than E by (i) above. 

In the convex production case, f,(l,,) c Z. Then f,(Z,) n U, = 0 and so, 
x,,(j) is degenerate for allj. I 
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