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On the Second Welfare Theorem for
Anonymous Net Trades in Exchange
Economies with Many Agents

Andreu Mas-Colell

1. Introduction

This chapter is set in the economic environment of an exchange economy
with a continuum of traders. It offers sufficient conditions for the efficient
net trades attainable by the use of anonymous mechanisms to be Walrasian.
In other words, given efficiency, anonymity rules out net transfers of wealth.
This is a problem of the Second Fundamental Theorem of Welfare Econom-
ics variety. The converse First Fundamental Theorem question, that is, con-
ditions for anonymous mechanisms to yield efficient net trades in continuum
exchange economies, was investigated by Dubey, Mas-Colell, and Shubik
(1980).

There shall be no need to consider mechanisms explicitly. The equilibrium
net trades of any sensible anonymous exchange mechanism do themselves
satisfy some anonymity properties. Hence, we simply study arbitrary net
trades that satisfy those properties and that are efficient. More specifically,
we consider two anonymity concepts for net trades. One we call, simply,
anonymity, the other, strict anonymity. Roughly speaking, the underlying
difference is that the second allows agents to enter the market (i.e., to use
the mechanism) any finite number of times (keep in mind that we are study-
ing continuum economies). We should quickly add that the resulting notions
are not at all new. Efficient and anonymous net trades are the extensively
investigated fair net trades (Foley 1967; Schmeidler and Vind 1972; Vind
1971; Varian 1976; Kleinberg 1980; Hammond 1979; Champsaur-Laroque
1981; Mclennan 1982), while the efficient and strictly anonymous net trades
are the strongly fair net trades of Schmeidler and Vind (1972). We apologize
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for introducing new terms, but we find the term fair excessively normative
in the present context.

It is well known that the hypothesis of a continuum of agents alone will
not make an efficient and anonymous, or strictly anonymous, net trade Wal-
rasian. If, for example, all the characteristics and individual net trades fall
into two types, there is not, from the standpoint of the present problem, any
qualitative difference from a two-agent economy. What turns out to matter
decisively is how varied the agents’ characteristics are, that is, how rich is
the support of the measure that describes the distribution of agents’ char-
acteristics.

Concerning efficient and anonymous net trades, an important result has
been established by Kleinberg (1980), Hammond (1979), Champsaur-La-
roque (1981), and McLennan (1982). In order to obtain Walrasian net trades,
they have showed the sufficiency of the following three types of conditions:
(i) the support of the characteristics’ distribution is connected (in a precise
technical sense); (ii) all preferences are smooth,; and (iii) the net trade under
investigation is interior (or, alternatively, one can impose boundary con-
ditions on preferences). The first is a clear richness condition, but all three
are indispensable. This is an interesting result, and we have no refinement
to offer. In this chapter we shall pursue a different approach, namely, we
shall require that the support of the characteristics’ distribution be large and,
of course, varied. More precisely (and leaving some technical conditions
aside), we should be able to prescribe arbitrarily a consumption vector, a
supporting price vector, and (within some limits) an endowment vector, and
find some agent in the economy with compatible characteristics. Finite di-
mensional parameterizations of charactertistics are not ruled out, but the
number of parameters must be of the same order as the number of com-
modities. Note also that our richness condition is of a global nature in that
it involves large, not just local, variation.

Our research on strict anonymity can be viewed as a natural extension of
Schmeidler and Vind’s (1972) work. We find that in order to get the desired
result for efficient, strictly anonymous net trades, we will not have to re-
quire, as with anonymous trades, a condition of global richness. A minimal
requirement of local variation of endowment vectors will suffice.

The work presented here should also be compared with Hurwicz (1979).
The conclusions are of a similar nature, that is, both works establish the
Walrasian character of allocations that are optima and equilibria of certain
noncooperative mechanisms. The differences in the models are, however,
substantial. Hurwicz’s key hypothesis is made on the mechanism. We make
no assumption on the mechanism. On the other hand, our results are valid
only for anonymous allocations in continuum economies. There are no such
restrictions in Hurwicz’s approach. Incidentally, this is perhaps the place to
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say what everybody knows, namely, that Hurwicz’s work has had a seminal
and pervasive influence in this entire area of research.

Section 2 describes the model and basic definitions. Section 3 (resp. Sec-
tion 4) presents a theorem for efficient, anonymous (resp. strictly anony-
mous) net trades, and Section 5 (resp. Section 6) contains the proofs.

2. Basic Concepts

2.1. The Economic Environment

There are | = 1 commodities and a population of agents characterized by
an endowment vector w € Rl+ and a continuous, convex, monotone pref-
erence relation = on the consumption set R’,. The space of such preference
relations is denoted P. By using the closed convergence on P (remember
that each = is a closed subset of R'. X R%), we endow the space of agents
characteristics & = P X R', with a topology and a corresponding o-field.
(See Hildenbrand 1974 for further discussion.)

A number of subsets of P will be important at different points of this
chapter. We record them here. First, we let P, be the preferences = with
compact indifference classes or, equivalently, satisfying the conditions: “if
y,z,vZ0,v >0, theny t+ av > z provided « is large enough.” This is
a form of strong desirability. Formally, P, = {= € P: for each z € R, the
set {v € R.: z = v} is compact}.

If u is a C, utility function for =, the bordered Hessian at v € R, is the
determinant:

8°u(v) @u()’
du(v) 0

We let

P,={= € P: = admits a C? utility function u with nonvanishing bordered
Hessian at each v € R.}.

In other words, P, is the usual space of C* preferences with indifference
classes displaying nonzero Gaussian curvature everywhere (see Debreu, 1972).

For each = € P, p >> 0, and w 2 0 denote by ¢(=,p,w) the (nonempty)
set of maximizers of = on {v € R,: p.v = w}. This defines the demand
correspondence on P X R'.. X R.. By an abuse of language we say that =
is strictly convex whenever &{=,p,w) is a singleton for all p => 0. We let,
finally,

P,={= € P: = is strictly cohvex, admits a c! utility function # and has
normal demand, that is, for all p >> 0 and w’ = w = 0, we have

¢(2’p’w,) 2 ¢(’2’p’w)}’
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The economy is composed by a continuum of agents. The set of agents’
names is the unit interval / = [0,1] equipped with Lebesgue measure, de-
noted A. The following definitions and concepts are standard.

DEFINITION 2.1. An economy is a (Borelian) map é: I — & such that,

denoting %(f) = (=,, o(1)), o < ».

For the rest of the chapter, we have given a fixed reference economy @.

DEFINITION 2.2. A net trade is a (Borelian) map x: / = R’ such that:

G) x(f) + @) =2 0fora.e.t €1
(i) fx = 0.

The distribution of agents’ characteristics induced by %, that is, the prob-
ability measure N ° 87! on #, is denoted v. The support of v, denoted
supp v C d, is the smallest closed set that has full measure.

Every net trade x induces a distribution X\ ° x~' on R'. We denote by
B, C R’ the support of this distribution.

2.2. Efficient and Walrasian Net Trades

Again the definitions of this section are standard.
DEFINITION 2.3. The net trade x is efficient if there is no other net trade
x' such that:

G X' + o@) =, x() + o@) fora.e. t €1,
i Mr €L X0 + o@) >, x(t) + o(®} > 0.

DEFINITION 2.4. The net trade x is Walrasian if there is a p € R’ such
that, for a.e. t € I

@ p. x(® =0, and
(i) x(f) + () is =, ~ maximal on {v € R.: p.v = p.o(®)}.

It is well known that every Walrasian net trade is efficient. Conversely,
if x is efficient, then there is a vector p > 0 (called an efficiency price vector)
such that, for a.e. t € I, x(f) minimizes p.v on {z € R" z + () =, x(¢) +
o(f)}. The quantities p.x(f) can be interpreted as the imputed net wealth transfers
atx. If p.x(t) = O for a.e. t and p >> 0, then x is, in fact, Walrasian.

2.3. Anonymous Net Trades

DEFINITION 2.5. A net trade x is anonymous if for a.e. t € I, x(¢) + w(?)
is =, — maximal on (B, + w(?)) N R..

If x is Walrasian, then p.z = O for each z € B,. Therefore Walrasian net
trades are anonymous. We have seen that they are also efficient. In Section
3 we shall give conditions for the properties of efficiency and anonymity to
characterize Walrasian net trades or, loosely speaking, for the anonymity
property to imply, given efficiency, uniform (hence, zero) transfers.
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REMARK 2.1. The interpretation of the anonymity property that we wish
to emphasize views it as a property necessarily satisfied, in continuum econ-
omies, by the (noncooperative) equilibria of anonymous allocation mecha-
nisms (see Dubey, Mas-Colell, and Shubik 1980 for a precise model of the
latter). We briefly describe the situation. Because the mechanism is anon-
ymous, the net trades attainable to each agent depend only on his action and
the distribution of actions taken by all the agents. Because, with a continuum
of agents, this distribution does not depend on the actions of any single
individual, it must follow that at equilibrium (almost) every agent maximizes
preferences on the same set K C R’ of individual net trades. If X is closed,
which is a reasonable hypothesis, then B, C K, and therefore the equilibrium
must be anonymous according to Definition 2.5. For present purposes the
content of this definition provides a sufficiently powerful property. Hence,
we apply Occam’s razor and dispense with the formal description of a mech-
anism. (For an explicit treatment of mechanisms see the previous reference
and Hammond 1979.)

REMARK 2.2. The notion of anonymity for a net trade, which does, of
course, make sense for economies with a finite number of agents, is con-
ceptually the same as the no-envy property introduced by Foley (1967) and
extensively studied since (see, for example, Schmeidler and Vind 1972; Var-
ian 1976). We prefer the term anonymous because it is less judgmental and
serves as a reminder of the basic property of the underlying, and hypothet-
ical, allocation mechanism.

REMARK 2.3. For the case of a continuum of agents, our definition of
anonymous net trades is slightly stronger than the corresponding no-envy
definition used by Kleinberg (1980) and Champsaur-Laroque (1981a). Ac-
cording to them, x has the no-envy property, if for a.e. t € I, x(¢) + w(?)
= v+ () for A e x”") — a.e. v € B,, while we require that this be true
for every v € B,. In other words, according to the weaker definition, for
an agent to be envious, he must envy a set of agents of positive measure,
whereas according to the stronger definition, it suffices that the agent envies
a net trade that is a limit of the set of net trades of positive-measure sets of
agents. It is not difficult to produce examples showing that our definition
is, indeed, strictly stronger. Nevertheless, the difference is conceptually small
and even more so if the mechanism point of view of Remark 2.1 is kept in
mind. We may add that while it simplifies the exposition, the theorems of
Sections 3 and 4 remain valid for the weaker definitions with only minor
adjustments of the proofs.

2.4. Strictly Anonymous Net Trades

Given a net trade x, let B¥ be the set of finite sums of elements of B, that
is,



272 ANDREU MAS-COLELL
Br=|J{m+...tvev EB,i=1,...,m}.
m=1

DEFINITION 2.6. A net trade x is strictly anonymous if for a.e. t € I, x(t)
+ o(f) is =, — maximal on (B¥ + w(r)) N R-.

As with the anonymity property, Walrasian net trades are strictly anon-
ymous. In Section 4 we shall give conditions for the properties of efficiency
and strict anonymity to characterize Walrasian net trades.

REMARK 2.4. With a finite number of agents, the concept of strictly anon-
ymous trades was introduced, under the name of “strongly fair” by Schmeid-
ler and Vind (1972) (see also Vind 1977). With a continuum of traders,
Dubey, Mas-Colell, and Shubik (1980) presented a concept of strict non-
cooperative equilibrium (for an anonymous mechanism) which stands rela-
tive to the notion of strictly anonymous net trades as the noncooperative
equilibrium stands relative to the anonymity of net trades. The motivation
for considering strict noncooperative equilibria then and strictly anonymous
net trades now should be clear. In an anonymous market in which individual
agents are negligible, it may be difficult to avoid the situation in which
agents enter the market several times (or, simply, that they use proxies). If
this is so, then the strict concept is the appropriate solution notion.

REMARK 2.5. As with anonymous net trades (Remark 2.3), we can think
of a formally weaker definition. Let w be the measure A © x™' on R'. For
each n, endow R” with the product measure . X ... X p. The map v; +
... + v, from R" to R’ induces a measure w" on R'. We could simply require
that, for a.e. t € I, x(r) =, v for &" — a.e. v € R’ and each n. Again, the
conclusions of Section 4 remain valid; however, it is not now clear to us if
this really is a weaker definition. As in the previous case, the conceptual
difference is so minor that we shall not concern ourselves with this matter.

3. Efficient and Anonymous Net Trades

3.1. Motivation by Examples

Even with the continuum of agents, efficient and anonymous net trades need
not be Walrasian. We illustrate this by three simple and well-known ex-
amples.

EXAMPLE 3.1. The measure v = \ o €~! gives equal weight to the two
characteristics represented in Figure 9.1. The net trade value for the two
types are also indicated. It is obvious from Figure 9.1 that the net trade
considered is efficient, anonymous, and not Walrasian. This example shows
that the continuum alone does not make for a situation qualitatively different
from a two-agent economy. To generate more interesting phenomena, we
will need at the very least some dispersion of characteristics.
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24

w + X

Figure 9.1. Illustration for Example 3.1.

EXAMPLE 3.2. The functions € and x are represented in Figure 9.2. Be-
cause w € Int co {x(¢): ¢ € I}, the assignment £ — x(¢f) can be made so that
[x = 0. Again, x is efficient, anonymous, and not Walrasian. Further, x(¢)
>> 0 fora.e. t € I. In contrast with Example 3.1, supp v is now connected.
However, it is not very large, that is, we have gone from 0- to 1-dimen-
sional, and preferences in supp v are not smooth. In particular, the efficient
allocations can be supported by more than one normalized price vector.

EXAMPLE 3.3. Let / = 2. Using utility functions, we describe the char-
acteristics as follows:

() for0=¢t=1/3, o) = (4 — 9, 4 — 99 and u(x) = 1%,

(i) for 1/3 =t =2/3, w@® = (1,1) and w(x) = ¢ — 1/3)x" + D* +
2/3 — D& + DY,

(i) for2/3 =t =1, 0(@®) = 9t — 5, 9t — 5) and »,(x) = x".

Let B C R? be the set described in Figure 9.3. For each ¢t € 1, let x(¢)
be such that x(f) + o(f) is =, — maximal on B + w(#). In Figure 9.3 the
relative position of the x(#)’s are indicated. Because every point of B is taken
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2
!

Figure 9.2. Illustration for Example 3.2.

and 0 € Int co B, we can reparameterize ¢t — (,, w(?), x(#)) so as to make
x a net trade.

By construction, x is anonymous. To verify that it is efficient, note that
it is supported by the price vector p = (1,1). In fact, up to normalization,
this is the only supporting price vector. Clearly, however, x is not Walra-
sian.

As in the previous example, supp v is parameterized by a single variable.
Preferences are now smooth and x is supported by a single price vector, but
the net trade is not interior for all agents, that is,

A{t € I x(t) + 0(®) € Bdry R2)) = g > 0.

3.2 Boundedness of Anonymous Net Trades

Denote by . the distribution of initial endowments on R, that is, p=
\ o o', It shall be convenient (but not essential) to assume that supp w is not
too thin. This shall take the form of requiring w(Bdry supp p) = 0. Then,
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A2

Figure 9.3. Ilustration for Example 3.3.

in particular, supp . is the closure of its interior, and for each w € Int supp p,
v(P X R, + w)) > 0.

Even if supp w is bounded, a net trade x may not be (even when sets of
measure zero are disregarded). This is most unpleasant, and in order to rule
it out we shall impose the following weak hypothesis on the economy é:

(1) w (Bdry supp p) = 0
(i) for all @ € Int supp p, v(P, X (R, + ®)) > 0 (A.1)

This roughly says that every commodity is strongly desirable to a rep-
resentative group of agents. Of course, part (ii) is satisfied if v(P, X RL)
=1.

REMARK 3.1. Champsaur-Laroque (1981a) also encountered the bound-
edness problem and dealt with it differently. As will be seen in the next two
sections, the method we use, that is, hypothesis (A.1), is in tune with the
general approach of this chapter of contemplating a large supp v.

3.3 A Theorem

In various degrees of generality Kleinberg (1980), Hammond (1979),
Champsaur-Laroque (1981), and McLennan (1982) have established the
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Walrasian character of an (bounded) efficient and anonymous net trade x
under three kinds of hypotheses:

(i) every preference in supp v is smooth, that is, supp v C P, X R.. This
is the condition violated by Example 3.2.

(ii) supp v satisfies a (Lipschitzian) arcconnectedness property. This is the
condition violated by Example 3.1.

(iii) For a.e. t € I, x() + w(r) >> 0. This is the condition violated by
Example 3.3. We should remark that it is possible to state conditions
directly on € implying that every efficient net trade satisfies (iii) (see
Champsaur-Laroque 1981).

In this chapter we shall pursue a different approach. A common feature
of the three previous examples is that supp v is small: what we shall do here
is to require that supp v be large. Take the limit case where the economy
€, assumed to satisfy (A.1), is such that supp v = . Then it is implied by
the theorem below that every efficient and anonymous net trade is Walra-
sian. A property such as supp v = # is one of global richness. In the econ-
omy there are agents of every possible kind, although nothing is said about
their frequency.

Of course, much less than supp v = #{ will do. In particular, the condition
to be given is entirely compatible with supp v being finite-dimensional (al-
though the number of dimensions cannot be smaller than 2/).

THEOREM 1. Suppose that €: ] — « satisfies (A.1). Let Q C P satisfy:

(1) Q is compact and Q C P,
(i) for every z € R’ and p € R’ ., there is a = € Q such that p =
ou(z), where u is a C' utility for =.

If Q X supp . C supp v, then every efficient and anonymous net trade

is Walrasian.

REMARK 3.2. The hypothesis Theorem 1 is a richness condition on
supp v. Put into words, and somewhat loosely, it says that given an initial
endowment vector w present in the economy, there is some agent with en-
dowment w and nice preferences displaying arbitrarily prescribed marginal
rates of substitution at an arbitrarily prescribed point.

REMARK 3.3. Note that supp v is required neither to be connected nor to
be contained on P, X R.. Even if supp w and Q are connected, supp v may
not be. Thus, our hypotheses are neither weaker nor stronger than the ones
associated with the Kleinberg-Hammond-Champsaur-Laroque-McLennan
theorem.

REMARK 3.4. It is obvious from Examples 3.1-3.3 that part (ii) of the
hypothesis of Theorem 1 is essential. Concerning part (i), Example 3.4 (resp.
Example 3.5) below will show that the strict convexity of the elements of
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Figure 9.4. Illustration for Example 3.4.

Q (resp. the compactness of Q) cannot be dispensed with. We do not know
if the normality of demand for the elements of Q is dispensable. At any rate,
it is a weak hypothesis.

EXAMPLE 3.4. We take ] = 2. Initial endowment vectors are concentrated
on the square [2,3)>. Half the total mass of agents have linear utility func-
tions, which we identify with a gradient vector g € (0,1)>. More specifi-
cally, half the total mass are uniformly distributed on (0,1)*> X [2,31%. For
these agents we let x(#) be such that x(¢) + w(r) maximizes g(f).z on the set
((B" U B"Y + w()) N R%, where B’, B” are as in Figure 9.4. As is clear by
reason of symmetry, the mean net trade of these agents is the vector (.5,.5).
The other half of the total mass of agents have common characteristics (w,=),
where @ = (2.5,2.5) and > admits a C’ utility function # with 9u(2,2) =
(1,1) and u(2,2) > u(.5,5.5) = u(5.5,.5). For these agents we put x(f) =
(—.5,—.5). Clearly, we end up with a feasible net trade with B, = B’ U
B" U {(—.5,-.5)} and which is, therefore, anonymous and, because sup-
ported by p = (1,1), efficient. See Figure 9.4.

If we require 0 € supp ., then an example such as 3.4 cannot be con-
structed for [ = 2; however, there are analogous examples with / = 3,

EXAMPLE 3.5. We take [ = 2 and the same endowment vector o for all
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24

Figure 9.5. Illustration for Example 3.5.

agents (the example can be modified easily to satisfy (A.1)). To every (z,9)
€ R, X R, we assign an arbitrary =,, € P, representable by a utility
function u with ou(z) = g. However, with reference to Figure 9.5, the as-
signment (z,q) — =, can be made “measurably” and so that (i) if z & J
or “2 € J and q' # ¢°,” then the maximizer of =, , on K, denoted y(z,9),
belongs to K, U K,, and (ii) if z € J and q' = 4°, then there is a y(z,q) €
K that maximizes =,, on K; U K, U K;. Now let f: [0,1] = R} X R%,
be an arbitrary, measurable map with supp(A ° f') = R}, X R, and put
=, = 2q,, 2(0) = y(f(D), v = [z, 0() = w, x(f) = z(t) — w. The net trade
x is then anonymous and efficient, but not Walrasian. A moment’s reflection
will reveal that the closure of {=, ¢t € I} cannot be a compact subset of P,.
Indeed, if the closure is compact, then it should contain some preference
=* with an indifference map exhibiting a kink at point a.

REMARK 3.5. The global character of the richness hypothesis should be
emphasized. A condition of local richness would be, for example, that
v(Bdry supp v) = 0. Then, for a.e. ¢t € I, every (=,w) sufficiently near
(=,w,) would (nearly) correspond to the characteristics of some agent in the
economy. This is, however, too weak for the conclusion of the theorem. It
is not difficult to modify Example 3.1 to illustrate this fact. Because it will
be useful in Section 4, we record the example explicitly.
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Figure 9.6. Illustration for Example 3.6.

EXAMPLE 3.6. We take [ = 2. The support of the measure v is constituted
by two small neighborhoods of the characteristics (Z,,w), (,,w) indicated
in Figure 9.6, and it gives equal weight to both of them. Also, v(Bdry supp v)
= 0. We assign to the agents ¢ with characteristics near (=,w) (resp. (2,,0))
the net trade x(#) such that x(#) + w maximizes preferences on X, (resp. Kj).
If supp v is sufficiently small, these individual net trades are well defined
and supp N ¢ x~! is constituted by two small segments B;, B, containing, re-
spectively, z; and z, in their relative interiors. Then 0 € Int co(B, U B;)
and, therefore, the distribution v can be fixed up so that we have a feasible
net trade that, clearly, is anonymous and efficient but not Walrasian.

REMARK 3.6. It is not clear to us if the conditions (i) v(Bdry supp v) =
0 and (ii) Int supp v is arcconnected, would suffice for the conclusion of
the theorem. Remember that the closed convergence topology on P is very
coarse; thus the requirement that supp v has a nonempty interior is strong.
In particular, the topology on P imposes no tight restrictions on supporting
hyperplanes to {z: z = v} near the boundary of R',. A sensible result should
not depend on this peculiarity. If supp v C P, X R, then it is natural to
consider C'-type topologies. With them, conditions such as (i) and (ii) above
do not yield the desired conclusions. It is straightforward how to modify
Example 3.3 so as to make supp v the closure of its interior in a C' topology
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(C" uniform covergence on compacta of a normalized family of utility func-
tions, for example).

4. Efficient and Strictly Anonymous Net Trades

In this section we shall investigate conditions under which efficient, strictly
anonymous net trades are Walrasian. Relevant references on previous re-
search are Schmeidler and Vind (1972) and Vind (1977). Working with a
finite number of agents, they gave a condition that, when fulfilled by a
strictly anonymous net trade, implied that it must be Walrasian. Confining
ourselves to efficient, strictly anonymous net trades, we look for conditions
on the data of the problem, that is, the distribution of agents’ characteristics.
Schmeidler and Vind’s work, however, is important for ours both because
we draw on some of their techniques of proof and because one could in-
terpret our hypotheses as guaranteeing that, in the presence of efficiency,
any strictly anonymous net trade must satisfy the Schmeidler-Vind condi-
tion.

We begin by pointing out that some condition is needed, and for this
Example 3.1 will suffice. Figure 9.7 represents B¥ which is a discrete set.

-
.
b
. WXy N ~2
N
N
. A
®
BX w \0)+X‘

=
CI)+BX
.

°a

Figure 9.7. Variation on Example 3.1 for strict anonymity.
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It is clear that if =, and =, are chosen appropriately, the same net trade x
of Example 3.1 will be not only anonymous but aiso strictly anonymous.

On the other hand, the strictness requirement is very strong, so it must
make a substantial difference. To illustrate this point, consider Example 3.6.
Figure 9.8 represents B¥ (it is instructive to consider why this is so). Ob-
viously, no agent now is maximizing preferences, and thus x is not strictly
anonymous. The difference between Examples 3.1 and 3.6 is that in the
latter the distribution of characteristics is not concentrated in two points, but
rather it is spread over two, possibly small, open neighborhoods. We saw
that this did not matter much for the analysis of anonymous net trades, but
it is crucial for the strictly anonymous case. Indeed, the contrast between
the two examples suggests that a condition of local variation of character-
istics may suffice to make every efficient, strictly anonymous net trade Wal-
rasian. We shall see that this is so in a particularly strong manner. First,
the local richness of characteristics will not be needed over the entire support
of the distribution but only at some point. Second, at that point, and pro-
vided the preference relation is nice, the local variability of initial endow-
ment vectors will suffice. Precisely, we will require that supp v contains a
set of the form {=} X V where = is smooth (i.e., = € P) and V C R",
is open.

As with anonymous net trades (see 3.2) we also need in this section some

2)

Figure 9.8. Example 3.6 is not strictly anonymous.
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condition yielding, when supp v is compact, the boundedness of strictly
anonymous net trades. As even weaker desirability hypothesis than that in
Section 3 will suffice:

»(P, X RL.) > 0. (A.2)

We are now ready to state the second theorem.
THEOREM 2. Suppose that €: ] — & satisfies (A.2). Let {=} X VC P X
R, . satisfy:

i) = € P,, and
(i1) V is open.

If {=} X V C supp v, then every efficient and strictly anonymous net

trade is Walrasian.

REMARK 4.1. It goes without saying that the local richness condition of
Theorem 2 is not the only possible one. If so desired, the variation could
be in preferences, for example. We have given the formulation of the theo-
rem because it is simple to state and also because it appears minimal in the
sense of using no more than / parameters. In general, we cannot hope to
obtain the conclusion of Theorem 2 with an n-dimensional local variation
condition if » is less than [ or / — 1.

5. Proof of Theorem 1

The proof shall proceed in five steps, the key ones being the second and
the fourth.

Step 1

Let x be the given efficient and anonymous net trade. With p = X o x~
we put J = supp . C R’ and call B = B,. By (A.1), J is the closure of its
interior. Hence, Int J # 0.

LEMMA 1. (B + ®) N R’ is nonempty and bounded for every € Int J.

PROOF. Because x() + w(t) € (B + () N R, for a.e. t € I and
Mt o) = @} > 0 (otherwise & &€ Int J), we get (B + @) N R, # . Sup-
pose now that (B + ®) N R’ is unbounded. Then (B + ») N R’ is un-
bounded for all w = @. If =, € P, and w(f) = @, then {z: x(¢) =, z} is com-
pact, and so x(f) cannot maximize =, on (B + w(f)) N R’. Hence M =,
€ P, and o(f) Z ®} = 0, which contradicts hypothesis (A.1). Therefore,
(B + @ N R, is bounded. QED

By Lemma 1 the correspondence o — (B + w) N R, is upper hemicon-
tinuous (u.h.c.) on Int J. Therefore, by Fort’s theorem (see, for example,
Dierker 1973), » = (B + ») N R’ is continuous as a correspondence on a
set J* C Int J dense in Int J.

1
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For each (=,0) € P X Int J, let &(=,w) C R’ be the set of maximizers
of Zon (B + w) N R.. By Lemma 1, &(=,0w) # & and by the Maximum
Theorem (see, for example, Debreu 1959), ¢ is an u.h.c. correspondence
on P X J*.

By (A.1), w(¢) € Int J for a.e. t € I. Therefore, because x is anonymous,
we should have x(¢) + w(®) € ¢(=,,0,) fora.e. t € I.

We say that p > 0 is a supporting price vector for x if, for a.e. t € I,
p.v Z p.(x(t) + w(r)) whenever v =, x(t) + w(r). Because x is efficient it
has some supporting price vector.

Denote by p the measure on & X R’ defined by p = A o (%,x + o)™

LEMMA 2.

(i) If (=,w) € supp v and w € J*, then (,0,y) € supp p for some
y €R., and y € ¢(=,w) for any such y.

(ii)) If x is supported by the price vector p > 0 and (=,0,y) €
supp p, then p.v = p.y whenever v = y.

PROOF. (i) Let (=,w) € supp v and w € J*. To prove that (=,w,y) €
supp p for some y € R", it suffices to show that there is 8 > 0 such that
if U is a (sufficiently small) open neighborhood of (=,w), then, for a.e. ¢
€ x~'(U), x(t) + w(t) belongs to the compact ball {z: ||z|| = B}. This B is
easily obtained. Just let o' >> w, o’ € Int J and pick B so that [z|| < B
whenever z € (B + ®) N R.. We can do so by Lemma 1. Of course, if
zEB+w)NR,, o = o, then also |zl < B. Remember too that
x(1) + w@t) € B + w(@)) NR, forae.t €.

Suppose now that (,m,y) € supp p. For each open neighborhood U C
o of (=,w) and € > 0, we have \Mt: €(z) € U and |(x(¢) + o(?)) — y| =
e} > 0. Hence, Mt: (t) € U, |x(t) + o(t) — y| = e and x(¢) + o(t) €
&(=,,0(2))} > 0, and so we can find a net (in fact, a sequence) (=, ,0,,Y,)
such that =, — 2, 0, — ©, ¥y, = y and y, € &(=,,»,). Because w € J*,
¢ is u.h.c. at (,w). Hence, y € ¢(=,w).

(i) By monotonicity of preferences it suffices to show thatp-v =Zp-y
whenever v > y. We argue by contradiction. Suppose that p-v < p -y and
v > y. Because (=,w,y) € supp p, we have =, = =, 0, = 0, Yo = X, T
w, — y where p supports =, at y,, that is, if z =,y,, thenp-z Z p-y,.
But by continuity, we eventually have p-v < p-y, and v >, y,. Hence,
we get a contradiction. QED

For the next three steps we fix an arbitrary @ € J*.

Step 2

Denote K = (B + @) NR..

LEMMA 3. There is p >> 0 and ¢ > 0 such that the hyperplane H,, =
{z: p-z = c} leaves K below it and H,, N R, = H,, N co K (see
Figure 9.9a).
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Hp,c

Figure 9.9a. Ilustration for Lemma 3.

PROOF. We begin by noting that X cannot be contained in any (strict)
coordinate subspace of R'. This is because if ¢ > 0 is small, then, for all i,
® — €e¢; € Int J, and so, by Lemma 1, (B + (& — &¢))) N R, # &.

For every p > 0 let £(p) be the set of maximizers of p-v on co K. The
correspondence p — £(p) is u.h.c., and by the observation of the previous
paragraph p - &(p) > O for all p > 0. Of course, &(p) is a compact, convex
set whose extreme points belong to X.

It is clear that our problem can be reformulated as that of finding a p >>
0 such that &(p) intersects all the coordinate axes of R'. We argue by con-
tradiction. The contradiction hypothesis is “for all p >> 0, &(p) does not
intersect some axis.” The essence of the proof argument is illustrated in
Figure 9.9b.

We first show that for some p >> 0, y € &(p) N K, and i, &(p) misses
the i-th axis and y' > 0. Because X is not contained in any strict coordinate
subspace, co K intersects R’ .. Therefore, we can find z € Bdry(co X —
R NOR.,. Let g > 0 support co K — R, at z. If ¢ >> 0, then we take p

Figure 9.9b. Illustration for Lemma 3.
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= g. By hypothesis, £&(p) misses some axis, say the i-th. Because 0 < z
= 7' € &p), some extreme point y € &p) must have y' > 0. Of course,
¥ € K. Suppose now that g = 0 for some i. Because g -§(q) > 0, &(q)
misses any axis i with ¢ = 0. Let g, be given by ¢, = ¢’ if g > 0 and
g. = & > 0 otherwise. Then g, >> 0 and, by continuity, if € is small, then
&(g.) is disjoint from any axis i with ¢ = 0. Suppose that v € co K ~ R,
andv' =Oforalliwithg'=0.Theng, - v=qg-v=q-&¢q) =¢'2<¢,'z=
q. " &(g.), and so v € &(q.). Therefore, for any y € «E(qe ) (hence, for any
extreme point), we have that y' > 0 for some { with ¢’ = 0. Take p = ¢,
for € small and we are done.

Let p and y be as above. Say that i = 1. Putp, = (p',p* — &,...,p' —
e). If £ is small, then &p,.) should contain some v with v/ > 0 for some i
# 1. Otherwise, &(p.) intersects the first axis for arbitrarily small € and, by
the u.h.c. of &, so does £(p). Clearly, v can be taken to be an extreme point.

In summary, relabeling commodities if necessary, we can find p, p’' >>
0 and y, y' € K such that

(i) y (resp. y') maximizes p-v (resp. p' -v) on K
(i) p' =p'', p*>p"*
@dii) y' >0, y'* > 0.

According to the hypothesis of the theorem, there are strictly convex =,
=' € P representable by C' utility functions u, u’ such that du(y) = p,
du(y’) = p’, and (=,d), (=',®) € supp v. Then ¢(=,0) = {y}, ¢(=",6
= {y'}. By Lemma 2(i), (,8,y), (',®,y’) € supp p. Hence, by Lemma
2(ii), there is some price vector g supporting =, =’ aty and y', respectively.
But this is impossible because (p'/p*) < (p''/p'*), y' > 0, and y'* > 0,
that is, there is a feasible favorable trade of the first commodity for the
second between (=,») and (®',@). This contradiction proves the lem-
ma. QED

Step 3

LEMMA 4. If g is a supporting price vector for x, then ¢ = ap where p

is as in Lemma 3.

PROOF. With e; the i-th unit vector, let y; = (c/p’)e;. The vectors {y,,...,y}
are the extreme points of H,, N R' . Let =,, ..., =, € P be strictly convex
and representable by C ! functions u,, ..., u,. Suppose that p = du;(y;) and
(=,,®) € supp v for all i. These preference relations exist by the hypothesis
of the theorem. Clearly, up to a positive multiplicative constant, p is the
only price vector that simultaneously supports each =; at y; (i.e., for all i,
v =, y; implies p - v 2 p-y;). By Lemma 3, for each 7, y; € K and, because
=, is strictly convex and K lies below H,., we have y; = ¢(=;,@). By
Lemma 2(i), (;,®,y;) € supp p for all i. Therefore, by Lemma 2(ii), g
supports each =; at y;. Hence ¢ = ap for some a > 0. QED
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Note that because x is efficient, it has a supporting price vector g. There-
fore, it is a consequence of Lemma 4 that we can chose p = g in Lemma
3 (in particular, p can be chosen to be independent of ®). It is also a con-
sequence of Lemma 4 that, up to positive scalar multiplication, g is unique.

Step 4

With Q C P as the statement of the theorem, let M ={y ER.:
(=,®,y) € supp p for some = € Q}. By Lemma 2(i), M C K.

LEMMA 5. M is compact.

PROOF. M is the projection on its third coordinate of C = supp p N (Q
X {®} X [(B + ®) N R.]). Because supp p is closed, (B + @) N R’ bounded
(Lemma 1), and @ compact, the set C is compact and, being that the pro-
jection is continuous, so is M. QED

If p and ¢ are as in Lemma 3, then K, and therefore M, lie below, or
on, H, .. Lemma 6 proves that M lies above, or on, H,.. Combining the
two Lemmas we get M C H, .. In fact, we show in Lemma 7 that equality
holds, that is, M = H, N R, .

LEMMA 6. MCH, .

PROOF. For any g > 0, let &¢) minimize q.v. for v € M. Because M is
compact, &(g) # J and g — &(g) is u.h.c.

Suppose, by way of contradiction, that M is not contained in H,.. The
subsequent arguments are illustrated in Figure 9.10.

By Lemma 3 and the contradiction hypothesis, we have a = p - &(p) < c.

Figure 9.10. Hlustration for Lemma 6.
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We argue, first, that £&(p) cannot intersect any coordinate axis of R’
Indeed, suppose that v = (a,/p",0,...,0) € &p). By Lemma 3, v' =
(c/p',0,...,0) € K. Therefore, v' > v for some v/ € K and v € M. Let
(Z,0,v) Esuppp, = € Q.

By the monotonicity of =, v' = v. By Lemmas 2 and 4, the price vector
p supports = at v. Hence, if u is a C' utility for =, du(v) = ap and (ap
— du(v))v = O for some «. If @ > 0, then 9,u(v) > 0, and so du(v)(v' —
v) > 0. Hence, v' > v, which contradicts Lemma 2(i). If a = 0, then 0 =
v € M. With = and u as above, we have du(0) # O by hypothesis. Let
d;u(0) > 0 and put v' = (0,...,c/p',...,0) € K. Then v’ > v and we have
again a contradiction. We conclude that £(p), does not intersect any axis.

Let & < 1. Define p, by p. = pL(1 — &'), where € is the i-th power of
. By continuity, if ¢ is small, then §(p. ) does not intersect any axis. Hence,
there is z € £(p,) such that z', z/ > 0 for some i < j. Note that (p'/p’) >
(pt/pl). Pick = € Q with (=,,2) € supp p. By Lemmas 2(ii) and 4, p
supports = at z, that is, for some a > 0, we have d,u(z) = ap;, d;u(z) =
ap;, where u is a C' utility representing =. Because z;, z; > 0 and
(3;u(z)/d;u(z)) > (p./pl), we can pick y €R’, such that y > z and
Py =p. - E(pe).

By hypothesis there is =’ € Q, representable by a C' utility ', such
that ou’'(y) = p. By Lemma 2(i), there is v € R, such that (=,a,v) €
supp p. By Lemmas 2(ii) and 4 =’ is supported at v by p. Therefore, p
supports =’ both at y and at v. By the Normality hypothesis on the elements
of Q (this is the only time it is used!), we have either v < y or v = y.
Because v €E M, p, - v = p, - y. Hence, v < y is impossible. Therefore v = y.

In summary, we have found (Z,»,z) € suppp,y >zandv EM C K
such that v = y. By monotonicity, v > z and we have obtained our final
contradiction because, by Lemma 2(i), z should maximize = on K. QED

LEMMA 7. M =H, . NR.,.

PROOF. This is simple enough. Let y €EH, N R'.. By hypothesis there
is = € @ such that p supports = at y. Because (=,») € supp v there is,
by Lemma 2(ii), a z such that (,®,z) € supp p. By Lemmas 2(ii) and 4,
= is supported at z by p. Because z E M C H, . (Lemma 6), we have p -z
= ¢. Of course, p -y = c¢. Therefore, with the budget defined by wealth ¢
and price vector p, the preferences are maximized at y and z. By hypothesis,
this maximizer is unique. Hence y = z € M and we are done. QED

The next lemma follows simply from Lemma 7.

LEMMA 8. K=H, NR,.

PROOF. Because M C K, it suffices to show that y €E K and p-y < c is
not possible. Suppose, by way of contradiction, that this was the case.
By Lemma 7, there is then v >> Q suchthaty —® + vE B. If e > 0 is
small, then ||y — & — x(¢)|| < e implies x(t) << y — @ + v. If, moreover,
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x() + o) 2 0, we have 0=x()+ o) <Ky—o+v+ o) EMB+
(@) N R, . By the monotonicity of preferences, this yields x(¢) + w(t) &€
o(=,,). But x(1) + o(t) € o(=,,0,) for a.e. t € I and, by the definition
of Bandy — @ € B, Mr: |y — @ — x(¢)|| < €} > 0. This contradiction
proves the lemma. QED

Step 5

We are now ready to argue that the price vector p obtained in Lemma 3
and which, by Lemma 4, can be taken to be independent of @ is a Walrasian
price vector. Because p supports x and p >> 0, it suffices to show that
p-x(t) = 0 for a.e. t € [ or, simply, that p-y = p-w whenever y €
B+ w)NR, and w € J*. (Remember that J* is dense in Int J; so, for
each w € Int J, there is o’ € J* with 0’ < w.)

Let c{(w) be as in Lemma 2 for @ = @. By Lemma 8, p -y = c(w) for
all y € (B + w) N R, .We shall show that c(w) = p o for all ® € J*.

If c(w) <p-oforall w € J*, then p - x(t) < O for a.e. ¢t € I. Therefore,
P (fx) < 0, which contradicts fx = 0 (because of (A.1), efficiency pre-
cludes fx = 0 and fx # 0). Hence, c(®) = p - & for some @ € Int J*. Take
V= (c(®)/p-e)e — @ = 0. By Lemma 7, v € B, and therefore v + © €
B+ w) NR. for all o € J. By Lemma 8, we get p- (v + w) = c(w) for
all € J*, which yields c¢(w) = p - w for all ® € J* and finishes our proof.

6. Proof of Theorem 2

The given efficient and strictly anonymous net trade is denoted x. We let p
be the measure on s{ X R’ induced by (é,x + ), thatis, p = Ao (€,x +
w)"'. Put B = B,, B* = B*, T = closure B*. The generic symbols for a
coordinate subspace of R' and its strictly positive orthant are, respectively,
Mand M, .
The proof proceeds by a sequence of five lemmas. Lemma 1 shows that
T always has the form indicated in Figures 9.7 and 9.8, that is, a discrete
union of translates of a linear subspace L. The proof relies on some algebraic
facts already used by Schmeidler and Vind (1972). Lemma 2 uses (A.2) and
shows that T is contained in an hyperplane with strictly positive normal. The
next three lemmas exploit the efficiency of x and obtain dim L = [ — 1.
This, then, yields the theorem. Each lemma presupposes the previous ones.
LEMMA 1. There is a linear subspace L C R' and vectors vy, ..., » € R’
such that {L,v,,...,v;} are linearly independent and T = {y € R: y
= v+ 3f_;nv;, v € L and n, integer for all j}.
PROOF. The usual operation of vector addition makes R’ into an algebraic
group. We shall demonstrate that T is a subgroup of this additive group.
Then we need only appeal to the fact that any closed subgroup of R’ can be
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expressed in the form required by the lemma (see Bourbaki 1947, chapter
7, p- 65, Theorem 2 and its corollary).

Denote by B,, the sum of m copies of B. Then B* = U,._, B,,.

It is clear that T is closed under addition. Let z,y € T. Then z, — z,
v, — y for z,,y, € B. Of course, z, + y, —> z + y. Suppose that z, € B,,,
v. €B,. Thenz, +y,€B,,, CB*. Hence,z + y € T.

To show that T is a subgroup we must prove that z € B* implies —z €
T. This is more delicate. Let z € B,, and € > 0. We shall exhibitav € B*
such that |z + v|| = e. Because ¢ is arbitrary, this will suffice.

We begin by proving that 0 belongs to the relative interior of co B, de-
noted J. If not, we can find ¢ € R’ such that g -y > 0 whenever y € J. We
should have A{r: g-x(¢) > 0} > 0. Otherwise the support of the measure
induced by x, which is B, and its convex hull, would be contained on {y:
gy = 0}. Henceforth, [q-x(¢) > 0, which contradicts fx = 0 (efficiency
precludes fx < Q). Because co B,, is a sum of m copies of co B, we also
have that O belongs to the relative interior of B,,. What this gives us, by
Caratheodory’s theorem, is that we always can express 0 = z + 2., o;z; for
some o; > 0 and z; € B,,. Let ¢ > max]||v,|.

By elementary number theoretic facts (see Hardy and Wright 1954,
p. 170), there are positive integers r and ry, ..., ry such that [ro; — ;| <
g/kc for every j. Because —rz = 3;_ ro;z; if we puty = Zf_,r;z;, we get
ly + rz| < €. Finally, put v =y + (r — 1)z. Then |z + v|| < ¢ and
vE E};IBWJ. + B,-1 C B* as we wanted. QED

LEMMA 2. There is p >> 0 such that p-T = 0.

PROOF. The lemma holds if co T N R, = {0}. Suppose, by way of con-
tradiction, that v > 0, v € co T. )

Consider any ¢t € € (P, X R, ). Then there is 8 > 0 and 8 > 0 such
that w(¢) + y >, x(t) whenever ||Bv — y| = 8 for some B > B. Also, w(z)
+ y >> 0 if 8 is small enough.

We can express v as v = z + 2f_;o;v;, where z € L and the v/s are as
in the statement of Lemma 1. Let ¢ > max;|;|. By elementary number
theoretic facts (see Hardy and Wright 1954, p. 170), there are integers m
> B and m,, ..., m, such that |mo; — m;| < 8/kc for all j. Denoting y =
mz + Zf_;myv; € T, we then have |mv — y|| = 8. Hence w(r) + y >, x(2)
and o(#) + y >> 0. If y' € B* approximates y close enough, then these
properties are preserved. Therefore, x(¢#) does not =, — maximize on
B* + w(t). So v(P, X R'.,) = 0, which contradicts (A.2). QED

LEMMA 3. There is an open and dense set J C R such that if M N (T +

w) # &, w € J, then M U L spans R, that is, L is transversal to every
coordinate subspace.

PROOF. If dim L = I, we are done. SoletdimL =1 — s <[ and A be
a s X [ matrix such that L = {v: Av = 0}. Of course, rank A = 5. We let
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A’ be the generic symbol for s X m matrices whose columns are taken
from A.

With vy, ..., v; as in Lemma 1, let {c;} be an enumeration of the vectors
of the form ¢; = Sf_,n,Av;, where the n; are integers. Define J = {w € R':
ifrank A’ < s, then A’'y’ = ¢; + Aw has no solution for any ¢;}. The set
J is open and dense. Indeed, if rank A’ < s, then § = U;(Range A’ — ¢;)
C R’ is a discrete union of translates of a lower-dimensional subspace. Hence
if Aw € S, then Aw'& S for all @’ near w, and if Aw € S, then, because
rank A = s, Aw’ & S for some o’ near .

NowletzEMN T + w), ® €J. Say that M ={y:y" " = ... =
= (0} and put A = [A',A"] where A’ are the first m columns. For some 7,
...,mand v € L, we have z =v + Zi_;n;v; + » or, premultiplying by A4,
Az = ¢; + Ao for some ¢;. Denoting by z' the first m entries of z, we have
Az = A'z'. Hence, A'z' = ¢; + Aw. Because w € J, this yields rank A’
= 5. The kemnel of A’ is M N L. Therefore, dim(M N L) = m — s, and so
dmM UL)=dmM+dmL —-dmMNL)y=m+1—5s— (m— 5)
= [, which is what we wanted. QED

LEMMA 4. There is = € P,, an open VCR,,, b € R', a continuous

function f: V— R'., and coordinate subspace M transversal to L such
that, for all ® € V:

(i) (=.0,f(w)) € supp p,
(ii) f(w)is = — maximal on (L + b + @) N R%,
(iii) f(w) € M, ..

PROOF. Let = and V C J satisfy the hypothesis of the theorem.

For each o € V, define G(w) = (T + w) N R and g(w) = {z € R:
(=,0,z) € supp p}. Of course, g(w) € G(w). By Lemma 2, G, and therefore
g, is an u.h.c. correspondence. Also, g(w) # J for all ® € V (see the proof
of Lemma 2(i) in Section 5). Every u.h.c. correspondence is continuous
somewhere. (This is Fort’s theorem; see Dierker 1973.) Let g be continuous
at @ and pickup y € g(®). Theny = v + Zf_,n;v; + @ for v € L and integers
v;. Call b= 3f_ nyv;. Because if b’ = S{_,n}v; is different from b, then
L + b + & is at a finite distance from L + b’ + ® and because g is con-
tinuous at ®, there must be an u.h.c. selection f(w) € g(w) such that f(w)
€L+ b+ oforall w €V (if needed, V is replaced by a smaller open
set).

Lemma 3 guarantees that locally around ®, we have w = (L + b + )
N R’ continuous. (Let M be the minimal coordinate subspace to which y
€ f(®) belongs and M° its complementary. By Lemma 3, L projects onto
M5, . Hence (L + b+ ) NR', # &, and this yields continuity straight-
forwardly.) Therefore, if V is sufficiently small and o € V, every y € f(w)
maximizes = on (L + b + w) N R, (see the proof of Lemma 2(i) in Section
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5). But the set (L. + b + ©) N R, is convex, and = is strictly convex. Hence,
there is a unique maximizer, and we conclude that f: V— R’ is in fact a
continuous function.

The function c(w) = #{j: f/(w) = 0} is lower semicontinuous, integer-
valued, and bounded above by I. Therefore, by reducing V, if necessary,
we can assume that c¢(w) is constant on the connected V or, equivalently,
that {j: f/(w) = 0} is independent of w. Let M be the minimal coordinate
subspace containing f(w) and we are done. QED

LEMMA 5. With M as in Lemma 4, dm M N L = dim M — 1.

PROOF. Let u: M,, — R be a C? utility with nonvanishing gradient for
= on M, .. For each w € V, du(f(w)) is perpendicular to M N L.

The first observation is that the efficiency of x implies the collinearity of
any du(f(w)), du(f(w")) for o, ' € V. Indeed, (Z,0,f(v)), (Z,0, f(0"))
€ supp p, and Lemma 2(ii) of Section 5 applies here without modification.

Suppose now that dimM N L) < dm M — 1. Fix @ € V, y = f(w).
Because the surface of {z € M: z = y} has nonzero curvature at y (which
ensures that y' — (1/||du(y")[)du(y’) covers locally a neighborhood of du(y)
in the sphere), we can find y’ € M, . arbitrarily near y and such that du(y’)
is perpendicular to M M L but not collinear with du(y). Let A be a full rank
matrix whose kernel is L. Because y € L + b + ®, we have Ay = Ab +
A®. We can always find a solution o’ to Ay’ = Ab + Aw’. Moreover, if
y' is close to y, o' can be chosen close to w. Notice that y' € (L + b +
') N M, and du(y’') is perpendicular to M N L. Because = is strictly
convex, y' is the only vector that is = — maximal on (L + b + ©’) N
M, ;. Therefore, f(w’) = y' and we have obtained a contradiction because
w, o' € V and du(f(w)), du(f(w")) are not collinear. Hence, dim(M N L)
=dimM - 1. QED

The proof is now almost complete. Because M and L are transversal, that
is, M U L spans R', we have dim L + dim M = [ + dim(M N L). Hence,
from Lemma 5, dim L = [ — 1 and, therefore, from Lemma 2, T = {z €
R':p-z = 0}. Let x(z) be =, — maximal on (B* + o(¢)) N R, . If w(t) =
0, then x(¢t) EB* N R, CTN R, ={0}, that is, x(¢) = 0, which is, of
course, =, — maximal on TN R, If o(t) > 0, then (T + ») N R, is the
closure of its interior relative to T, that is, (B* + w) N R% is dense in
(T + w) N R, and so, by the continuity of =,, x(¢) is again =, — maximal
on (T + ®) N R'.. Because preferences are monotone, p is a Walrasian price
vector.
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